
C++ and Gamebryo: Introductory Material for the Intermediate/Advanced Track

Lecture Seven: On to Gamebryo

In what follows we will be using the Gamebryo documentation.

How you call it and how it starts. Note the various chapters in the Gamebryo documentation.

We’ve looked at the first new chapters (Getting
Started with and What’s New in Gamebryo) to
some extent, already. We also already examined
the first tutorial. There are 8 more we will look at.

As we can see on the left there are also tutorials on
PhysX, Animation Tool and Scene Designer.

A listing of all the tutorials in the Gamebryo documentation (right, then left image).

We’ll take the tutorials one by one to see what we can learn from each.

Tutorial 1: Examining the NiApplication Framework.

Our tutorials are built on the NiApplication framework. The NiApplication framework provides a
convenient method for quickly developing cross-platform applications. By default, NiApplication hides
many of the mundane implementation details that are required to create a simple Gamebryo
application. One of these hidden details is renderer creation. It is, however, a simple matter to override
the default virtual NiApplication::CreateRenderer function which we do in this tutorial in order
to illustrate how to create a platform specific renderer. After creating the platform specific renderer, we
set the background color to red to see that our renderer is working as expected.

Though not terribly exciting, this tutorial illustrates how to
create a Gamebryo renderer (a first step for users creating
custom game frameworks). In subsequent tutorials, we won't
bother overriding NiApplication::CreateRenderer as
the one provided by the NiApplication framework is
adequate for our purposes. As noted above, one of the
services the framework provides by default is the creation of
a renderer. However, the use of NiApplication is optional, and
many users may decide to write their own application
framework or extensions. This tutorial demonstrates basic
renderer creation for those users.

We’ll summarize tutorials like this, to get a bird’s eye view of the code and tutorial’s overall purpose.

Code discussion:

As in all Gamebryo applications, the customer
license code must be embedded for the
application to link correctly:

In this tutorial, the relevant code for the platform
platform specific renderer creation lies in our
overloaded CreateRenderer function. Since the
code is platform dependent, we have separated the
source into platform specific files and directories
for ease of project management. This separation is
also a good idea in regards to platform specific

assets which is illustrated in Tutorial 2: Nif Files.

Notes:

1. In Lecture Six we listed some (most, if not all) of the settings for a typical Gamebryo project. We

will continue to enumerate these settings individually despite the fact that we might be able to

hid that complexity with a template of settings, or a property sheet.

2. There should be one more C++ lecture between Lectures Five and Six. Postponed for now.

3. For us, this first tutorial is more about NiApplication that anything else, custom renderers

included. NiApplication. Turns out that NiApplication is just one of several platform-

independent application layers included with Gamebryo, along with NiSample, NiCursor,

NiInput, and NiFont and a few others. We discuss this briefly below.

mk:@MSITStore:C:\Emergent\Gamebryo-2.6-Binary\Documentation\HTML\Gamebryo.chm::/Reference/AppFrameworks/NiApplication/NiApplication_Basics/Introduction_to_NiApplication.htm
mk:@MSITStore:C:\Emergent\Gamebryo-2.6-Binary\Documentation\HTML\Gamebryo.chm::/Reference/AppFrameworks/NiApplication/NiApplication_Basics/Introduction_to_NiApplication.htm
mk:@MSITStore:C:\Emergent\Gamebryo-2.6-Binary\Documentation\HTML\Gamebryo.chm::/Reference/AppFrameworks/NiApplication/NiApplication_Basics/Introduction_to_NiApplication.htm

If you search the documentation for NiApplication you eventually get to this:

 NiApplication and NiSample are used by virtually all the samples that ship with the evaluation SDK.

These layers hide the underlying operating system, windowing system, and low-level Gamebryo setup.

Although a customer may choose to use these layers, it is not necessary nor recommended to do so,

if, for example, your application requires more than basic input handling. A simple application that does

not use NiApplication is shown in: {GAMEBRYO_INSTALL_PATH}\Samples\Demos\SimpleApp.

Note this information is available at:

See Section 4: System Details on this page.

Next, let’s discuss NiApplication briefly.

NiApplication is a thin platform-independent wrapper for Gamebryo sample applications. It is

designed to wrap platform-dependent functions so that an application can be written for one platform

and run on the other platforms that Gamebryo supports. NiApplication handles tasks such as

window creation, renderer creation, creation of an input system, and providing access to the command

line. Source code for NiApplication is included in all Gamebryo releases, including evaluation

releases. So we could look at the code, to see how it’s been defined, although we won’t just for now.

An application that uses NiApplication must explicitly link the NiMain and NiSystem libraries, as

well as any other Gamebryo libraries it uses. On Win32, the appropriate renderer library is automatically

linked in via #pragma comment compiler directives. NiApplication was designed as a basic starting

point to get applications running quickly on multiple platforms. Developers will likely find that there are

many parts of it that they want to either extend or simplify. For larger applications and games,

developers should look carefully at the services NiApplication provides and override the functions it

provides as required by their application. However, building on top of NiApplication is an excellent

way to get started quickly, and being familiar with it will help you understand the code in our samples.

The rest will be covered in context in the tutorials that follow. Gamebryo supports streaming of scene

graphs, cameras, lights, and other objects to and from disk. Gamebryo accomplishes this streaming

through the use of its own native NIF file format. This native file format is not intended to be a

competitor to other well-accepted file formats, but it does provide Gamebryo users with a convenient

way to handle persistent storage during the application development cycle. For more information:

There are two basic ways to create NIF files:

1. Exporting from Commercial Modeling Packages: the
Gamebryo 3ds max Plug-in and Gamebryo Maya Plug-in
enable users to save data in Gamebryo format without
leaving the modeling application.

2. Writing out Application-created Scenes: applications
that create their own scenes can easily write their
scenes to disk as NIF files. The application may have
created the scene procedurally, such as a fractal
landscape, or by writing an importer for the developer's
own (possibly proprietary) file format. Please see
Object Systems for details on the use of these objects.

 This method is particularly useful for Gamebryo users
with large libraries of models that were generated in an
older model format (e.g., a Quake II file).

Tutorial 2 shows how to load a NIF file.

Tutorial 2: Further Examining the Gamebryo AppFrameworks.

In this tutorial, we cover loading a Nif file from disk using Gamebryo's NiStream class. During our
coverage of this topic, the virtues of having platform specific Nif files and assets separated into platform
specific folders is pointed out. Simple scene graph traversal is also touched on, as well as an introduction
to various Gamebryo classes whenever they arise in the code. In this demo, our scene is loaded from the
file "WORLD.NIF". After the scene is loaded into memory, the application traverses the scene graph in
order to find an in-scene camera. Once the application finds the in-scene camera, it replaces the default
NiApplication camera with the one it found. Afterwards, the application relies entirely on
NiApplication's default OnIdle call for handling rendering and such. When the application runs, a
village with a remote control in the lower-center portion of the screen will be seen.

Note that this sample switched from derivation from
NiApplication to NiSample. NiSample is an NiApplication
derived class that adds a standardized user-interface, navigation,
and simplified shader system setup. This particular tutorial does
not take advantage of the shader system setup routines, and
therefore the ground will appear incorrect. Depending on your
platform, this may produce debug warnings. We'll solve this
problem in the next tutorial, Tutorial 3: Shaders, which will
introduce how to bring shaders into Gamebryo. The discussion
now addresses the relevant code from this second tutorial.

http://beautifulpixels.blogspot.com/2008/10/is-gamebryo-good-middleware.html (re: NetImmerse)

mk:@MSITStore:C:\Emergent\Gamebryo-2.6-Binary\Documentation\HTML\Gamebryo.chm::/Artist_s_Guides/Gamebryo_3ds_max_Plug_in/Introduction.htm
mk:@MSITStore:C:\Emergent\Gamebryo-2.6-Binary\Documentation\HTML\Gamebryo.chm::/Artist_s_Guides/Gamebryo_Maya_Plug_in/Maya_Plug_in_Introduction.htm
mk:@MSITStore:C:\Emergent\Gamebryo-2.6-Binary\Documentation\HTML\Gamebryo.chm::/Programmer_s_Guide/Object_Systems/Object_Systems_General/Introduction_to_Object_Systems.htm
mk:@MSITStore:C:\Emergent\Gamebryo-2.6-Binary\Documentation\HTML\Gamebryo.chm::/Reference/CoreLibs/NiMain/NiMain_Class_Reference/NiStream.htm
http://beautifulpixels.blogspot.com/2008/10/is-gamebryo-good-middleware.html

 Homework Seven

Using the information and resources available find and load a(nother) Nif file, just like in Tutorial 2.

 I start by defining a new project (Nine). I add a .cpp and a .h file to the
project (some name) and I describe their contents in detail below.

We start with these:

We’re currently aiming for the minimal setup that would force us to review the shortest number of

settings required to build (compile, link) and run the project. We’ve done this twice by now, so we know

that we’ll have to look into Configuration Properties: C/C++ and Linker mostly (see snapshot below).

That’s where most of our settings are located, as we well know by now.

Linker:

 Input: Additional Dependencies (NiSample.lib, NiFont.lib, NiSystem.lib, NiFloodgate.lib,

NiMain.lib, NiMesh.lib, NiAnimation.lib, NiParticle.lib, NiApplication.lib, NiVisualTracker.lib,

NiInput.lib, NiUserInterface.lib, NiCursor.lib)

 General : Additional Library Dependencies ([...]\sdk\Win32\Lib\VC90\DebugLib)

 Advanced

C/C++:

 General: Additional Include Directories ([...]\sdk\Win32\Include)

 Preprocessor WIN32;_DEBUG;_WINDOWS;NIDEBUG

 Language:

Now things will compile, but when we try to run (start without debugging) we get:

So we add the resource (existing item...)by browsing for it first and locating it.

Eventually the project looks like this:

We can now build the project (compile and link) and run it.

We now need to load a Nif file. So we make the following changes:

#ifndef SOMETHING_H

#define SOMETHING_H

#include <NiSample.h>

class something : public NiSample {

public:

 something(); // default constructor

 virtual bool CreateScene();

};

#endif
This is what something.h becomes (one virtual method has been added).

#include <NiMain.h>

#include <NiAnimation.h>

#include <NiParticle.h>

#include <NiLicense.h>

NiEmbedGamebryoLicenseCode;

#include "something.h"

NiApplication* NiApplication::Create() { return NiNew something; }

something::something() : NiSample ("Okay, are you ready?",

 DEFAULT_WIDTH,

 DEFAULT_HEIGHT,

 true)

{

 SetMediaPath("C:/Users/cogli/Desktop/data/"); // your path here

}

bool something::CreateScene()

{

 // NiStreams are used to load a NIF file from disk. [...]

 NiStream kStream;

 // Load in the scenegraph for our world...

 bool bSuccess = kStream.Load(NiApplication::ConvertMediaFilename("WORLD.NIF"));

 if (!bSuccess)

 {

 NiMessageBox("WORLD.NIF file could not be loaded!", "NIF Error");

 return false;

 }

 m_spScene = (NiNode*) kStream.GetObjectAt(0);

 NIASSERT(NiIsKindOf(NiNode, m_spScene));

 return bSuccess;

}

At this point the file is loaded and is visible. The rest of the details can be found in Tutorial 02 code.

This concludes the tutorial.

