C++ and Gamebryo: Materials for the Advanced Track

Lecture Eleven: Dodgeball (Part I)

Dodgeball Sample Usage and Controls
Dodgeball begins by displaying a splash screen. From here it enters the Ul system. The Ul cursor is moved using the mouse or left
analog stick, and Ul buttons {Start, Quit, etc.) can be selected using the left mouse button or Gamepad RDOWN button.

When the game is in play the aim is to move the character so he does not get hit by the balls. The following table lists the control while
the game is playing:

Keyboard |Game Pad Action
W/w Left Analog Maove character toward camera direction
E Left Analog Mave character opposite the camera direction
L/a Left Analog Mave character left
D/d Left Analog Mave character right
Mouse & |Right Analog Orbit the camera around the main character within defined
Left constraints.
Mouse
Button
Mouse Right and Left |Move camera closer to character (roll wheel forward) and further
Wheel Triggers away from the character (roll wheel backwards).
ESC Start & Select |Quit Demo
Button

A game finishes after 20 balls have been fired, and control returns to the Ul system. The game also ends if Slim is shot out of the
playground.

Automatic character control will activate if the demo runs for 10 secends without controller input The main character will then follow a
random pattern. Any control input will cancel this mode and return control to the player.

Eﬂ Homework Eleven

Maybe combine terrain demo sample with the kid and implement scaled-down version of game.

Contents l Index | Search | Favories |

Dodgeball Code Overview

Welcome to Gamebryo ~
+- @ Getting Started with Gamebiyo In this section we review the important classes that make up the Dodgeball sample.
+ Q What's Mew in Gamebrpeo
=[] Learring Gamebiyo The DodgeBall Class
IE Intraduction to Learning Gamebryo
@ FRenderer Settings Dialog The top-level application class is derived from Gamebryo's NiSample class. It is primarily responsible for three
+- @ Tutoriaks areas of functionality:

=) Demos
Demos Introduction
+- @ BackgroundLoad
+ 0 BadSushi
=-I[) ChaacterbrimationDiemo
CharacterdnimationD emao Overvie
(7] &t Aisset Details
0 CharacterPerformancelemo
@ ColisionT estDynamic
0 CaollisionT estStatic
@ Cubebap
@ DXIMEAAT entures
@ DynamicTestus

® Initialization: The Dodgeball class initializes the basic application and all of the other classes. It creates
the custom Ul system and initializes the PhysX SDK object. Initialization is done in this class because it is
the central starting point for the application.

Ul and Game State Management: The Dodgeball class manages the current game and Ul state. such as
which splash screen is up or whether the game is in play. It also manages the custom Ul created for the
splash screens and handles input. We put Ul functionality in this class because it has top-level control of
the application and contains the access to inherited NiSample functions.

Update: The basic per-frame update code is contained in the Dodgeball class, although virtually all the work
of update is inherited from the NiSample class or done by the PlaygroundiManager object. Update is

@ InpuDemo done here because this class is derived from the NiSample class and can inherit functionality.
@ MeshCieation

@ Mechinstancing Ul Manager Classes

@ Phys% Fluids

Dodgeball implements a custom Ul built on top of NiUserInterface classes. The custom Ul is designed to
0 Fhysbs Particles g P porHiUserinterface g
& Ph;sx Particlesdn-Code display the splash screens and buttons (the CustomUIGroup and CustomButton classes). ltis also
-1} Physx Tensin Demo responsible for the camera navigation system (the NiNavCustomController class) and hence the interpretation
of all user input.

] [e o []]]] [

[7] Physix Tenain Demo Overview
PhysX Terain Demo Functional O

[7] Physi% Tenain Dema Code Overvi Playground Manager

+ @ Phys Timing The PlaygroundManager class performs most of the work in dealing with the game environment. and it also

+- @ Ficking) . - .

" manages the character and cannons. It's functionality can be broken into 3 areas:

4] 0 ProfileS ample

+- @ ShaderSample

+- @ ShadowMap ® Playground management: The PlaygroundManager class is responsible for loading the playground art

#- @ Simpledpp assets and providing information about them, such as the playable area and the locations of cannon mount

+- @ SoftParticles points.

+- @ Standardi aterial

+- @ StenciShadaw ® PhysX Scene Management: The PlaygroundManager object creates and owns the NiPhysXScene

=-I[]) TenainDemo object and is hence the primary contact point for the PhysX scene. In a step that comes post initialization
Intraduction ta the Tenain Dema {when all PhysX content has been created) it sets up a contact reporter so that the application knows about
1] Tenain Demn Code Overview collisions. This infarmation is restricted to collisions between the ball and the character using the actar

+- @ UnicodeCharacterSets group information.

+- @ Veted ightingPipeline

+- 4 VideaT exture ® Update: The update functionality is broken into two pieces in order to facilitate asynchronous physics

=) Full Demos simulation and to enforce the requirement that no input be given to the physics system while it is simulating.
Full Demas Intraduction The pre-input update fetches simulation results that were begun in the previous frame and pushes any

=-1[] Dodgeball results to the Gamebryo scene graph. Note the use of the previous frame time as the time for which results
Dadgeball Overview are requested. User input and processing is done now, while simulation is known to be stopped. The post-
[7] Dodgeball Usage and Contiols update function updates all the other objects with the current time befare re-starting simulation.

Dodgeball Technology Highlights

Cannon and Ball Management
Dodgeball Art Assets

+ @ Lenguine on e The cannons and balls are managed by the CannonManager class and the Cannon class. The latter deals with
+- @ Metalwars targeting the cannon - setting it's pose to follow the character while it is targeting to fire_ It's Update function
- MOUT returns true when the cannon is in a position to fire.
+- @ Scensdop b Th

< 5 e CannonManager is responsible for loading the art assets for bath the cannon and the ball. The cannans are

cloned to create one for each mount point. Twentv ball clones are created at initialization so that thev are available *

