
C++ and Gamebryo: Comprehensive Review Material for the Introductory Track

Lecture Twelve: Track I Wrap-Up

In the on-line library we have two books:

This set of notes is summarizing the
contribution of Horstmann’s book
(second, on right) to this semester’s
Introductory Track. There’s no
cumulative, separate “Homework”
section below because we will
review 8 chapters and discuss 8
different problems (one from each
chapter) from the book. For each
problem we list the relevant section
to read from the book. Solutions are
provided at the end, for reference
only. Give problems an honest try first.

This set of notes is the equivalent of the first six sets of notes posted earlier. Wherever possible I

strongly recommend reading the whole chapter/book. In what follows I will state a problem and focus

on those parts in the book that provide the solution.

Ch. 2: Numbers and Objects

Note that you can’t use if statements since they were not covered in the chapter (or anywhere in the

book for that matter) thus far. If statements are covered in the next chapter. You can use them in this

problem if you think you have absolutely no other way of solving it.

Now: what is needed to solve this problem?

Answer: simple arithmetic.

For the how: read at least 2.5.

Also, 2.7 provides a major conceptual clue. I’m not saying you need to use Time objects, I am saying that

you should pay attention to what they provide (like being able to convert a time to a number of seconds

from the beginning of the day).

Here’s my program in action:

When the second time is bigger than the second

When the second time is before the first one.

It’s all about reading int values and working with int operators such as / and % and *.

Chapter Two Highlights

Besides what’s needed in the sample problem discusses above here’s what else you can read about in

this chapter: comments, good code layout, integer and floating-point numbers, arithmetic expressions

and types, strings, variables, simple input and output and using objects and invoking instance methods

on them. Note that all programs are discussed in detail and generic syntactic constructs are discussed in

the context of specific solutions. Even in this web version diagrams are very clear (see Fig. 3, 4, for

example). There is some discussion of casting in section 2.2, and of constants in the next section (which

also talks about enumerated types in Advanced Topic 2.4. The main section for the posted assignment is

2.5 (Arithmetic). Pay attention to what / means as integer division and to the meaning of the %

operator. Reading strings is different than reading lines (as strings). Strings are objects, like Time objects.

Objects can do things for you, if you ask properly; for example, objects of type string can report their

length, create a copy of (a part of) themselves, etc. Operations with strings includes concatenation. A

special section is 2.6.4, which deals with formatted output1. Regarding Time objects please note you

need to use some of the code provided with the book. Other than that everything he says there is

correct and useful and the diagrams are wonderful. If you use his library you can also produce graphics,

but that’s optional in the chapter and uninteresting in the context of this class. There is also a nice

summary and a link to the C++ documentation site.

Other good problems to think about in this chapter: R2.11, P2.3 (no ifs but you can use abs), P2.9, P2.10.

1 #insert <iomanip> with cout << setprecision(2) << setw(8) << x; and cout << setprecision(2) << setw(8) << x;

Ch. 3: Control Flow

Here’s my program in action in successive instances:

There are two solutions that I present. The first one is identical with the statement. The second one only

contains one test based on which the answer is determined. Read 3.1, 3.5 to understand my solutions.

Chapter Three Highlights

Branches, loops, booleans, nested branches and loops, comparing numbers and strings, infinite loops.

The selection operator is sometimes useful (advanced topic 3.1). Loops: while, for, do. Advanced topic

3.5 brings up cin.fail() and cin.eof(). If you find boolean algebra confusing the review exercises are a

must. Good problems to practice with: P3.4, P3.5, P3.8, P3.14, P3.22 (other than the one discussed).

Loops are very important. Take a look at this review exercise from chapter 1. Can you solve it now?

Ch. 4: Functions

For this I will provide the classes as follows:

#include <iostream>

#include <cmath>

using namespace std;

class Point {

public:

 Point(double x, double y) { this->x = x; this->y = y; }

 double distanceTo(Point other) {

 return sqrt(pow(this->x - other.x, 2) + pow(this->y - other.y, 2));

 }

private:

 double x, y;

};

class Circle {

public:

 Circle(Point p, double radius) : center(p) { this->radius = radius; }

 Point getCenter() { return Point(center); }

 double getRadius() { return this->radius; }

private:

 Point center;

 double radius;

};

bool isInside(Point, Circle);

int main() {

 Point p(3, 4), q(-2, 1);

 Circle c(p, 10);

 cout << isInside(q, c);

}

bool isInside(Point p, Circle c) {

 // you need to provide this!

}

Alternatively, if you don’t feel very comfortable doing this define a procedure that takes five arguments,

two doubles for the point, and three doubles for the circle (two of them the coordinates of the center,

and the third one the circle’s radius) and returns true or false as the coordinates of the point are inside

or outside the circle.

Chapter Four Highlights

Sections 4.1, 4.2 are very basic and clear. Section 4.3 is mostly on ergonomics and reliability, while 4.4

clarifies the purpose of the return keyword and return type of a function. Parameters are discussed in

section 4.5 along with the concept of declaration of a function. After a short section 4.6 on side effects

(not taken in their most general meaning) the next section gives an example of a procedure as opposed

to a function (a procedure does not return any value, merely producing side-effects). Section 4.8, next,

becomes the first most important section thus far. Note Syntax 4.4 and Advanced Topic 4.2 and we

point out that without this section it would be less clear that parameters are being passed by value.

#include <iostream>

using namespace std;

void fun(int x) {

 x = x + 1;

 cout << x << endl;

}

int main() {

 int x = 5;

 cout << x << endl;

 fun(x);

 cout << x << endl;

}
Parameters are passed by value. Any changes to x in fun are local, and not visible in the caller (main).

#include <iostream>

using namespace std;

void fun(int& x) { // notice this change here

 x = x + 1;

 cout << x << endl;

}

int main() {

 int x = 5;

 cout << x << endl;

 fun(x); // fun now can change the x in the caller

 cout << x << endl;

}
Passing a parameter by reference. Let’s revisit this as soon as we discuss classes and objects.

Section 4.9 is really the last important technical section of this chapter. (The rest sections are important

in general, even if we were not to program in this particular programming language, that is, C++). In this

section variable scope and global variables are discussed. Here’s an example of the latter:

#include <iostream>

using namespace std;

int x;

void fun() {

 x = x + 1;

 cout << x << endl;

}

int main() {

 x = 5;

 cout << x << endl;

 fun();

 cout << x << endl;

}

Using global variables is like passing parameters by reference (to a certain extent).

Sections 4.10 and 4.11 develop a useful function and sections 4.12 and 4.13 discuss testing. Part of this

has to do with how we manage correctness and for that we have assert. Sections 4.14 and 4.15 further

discuss test suites, unit testing and the debugger.

Review exercises are recommended. Exercise 4.9 is the basic example the context where the definition

of a function is traditionally useful. Once we move to next chapter we will have plenty of opportunities

to write functions.

Ch. 5: Classes

Please start by re-reading section 2.7 (Using Objects) in Chaper 2.

Section 5.1 tries to explain the process of modeling. The next section immediately delves into concrete

development. Sections 5.3 and 5.4 further clarify the idea of encapsulation and discuss the definition of

member functions declared in an interface. Most of what you need to solve the problem for this chapter

is presented now. Notice the many examples including class Time used already in chapter 2.

Take a look at Syntax 5.2 and Common Error 5.3 in this section. Sections 5.5 and 5.6 cover constructors

with and without parameters. Notice Advanced Topic 5.1, Syntax 5.4 and Advanced Topic 5.2 which tells

us that Operator Overloading is also discussed in Chapter 14. So we have, for now, the following:

#include <iostream>

using namespace std;

class Point

{

public:

 Point (double xval, double yval);

 void move(double dx, double dy);

 double get_x() const;

 double get_y() const;

 void report() const {

 cout << "Point at (" << x << ", " << y << ") " << endl;

 }

private:

 double x;

 double y;

};

Point::Point(double xval, double yval) : x(xval), y(yval) { }

void Point::move(double dx, double dy) { x += dx; y += dy; }

double Point::get_x() const { return x; }

double Point::get_y() const { return y; }

int main() {

 Point p = Point(2, 3);

 p.report();

 // Point q; // won't work because no default constructor

 Point q(-1, 1);

 q.report();

}
Basic object-oriented modeling.

Sections 5.7 and 5.8 discuss accessing data members and compare member and non-member functions

mainly through the implicit parameter that member functions receive. The end of section 5.8 discusses

the components of a basic program and the next section 5.9 shows how to do separate compilation. A

summary ends the chapter. Suggested problems: P.5.3, 4, 5, 6, 7, 9, 10, 17, 19.

In the context of the previous program let’s discuss this:

#include <iostream>

using namespace std;

class Point {

public:

 Point (double xval, double yval);

 void move(double dx, double dy);

 double get_x() const;

 double get_y() const;

 void report() const {

 cout << "Point at (" << x << ", " << y << ") " << endl;

 }

private:

 double x;

 double y;

};

Point::Point(double xval, double yval) : x(xval), y(yval) { }

void Point::move(double dx, double dy) { x += dx; y += dy; }

double Point::get_x() const { return x; }

double Point::get_y() const { return y; }

void fun(Point p) {

 p.report();

 p.move(2, 2);

 p.report();

}

int main() {

 Point p = Point(2, 3);

 p.report();

 fun(p);

 p.report();

}
Call by value means a copy of the object is in fact passed. Not a reference like in Java.

...

void fun(Point& p) {

...
 The only necessary change if you want to pass the points by reference.

Ch. 6: Vectors and Arrays

In section 6.1 note Syntax 6.1 and 6.2 and the following code:

#include <iostream>

#include <vector>

using namespace std;

int main() {

 vector<int> v;

 cout << v.size(); // size zero

}

Passing vectors as a parameter: same thing as passing an object. By default the arguments are passed by

value. If you pass them by reference you save the time it takes to copy. If you want to pass them without

changing them the use of const is recommended in conjunction with &, for example:

#include <iostream>

using namespace std;

void fun(const vector<int>& v) {

 v[1] = 100;

 for (unsigned int i = 0; i < v.size(); i++)

 cout << v[i] << endl;

}

int main() {

 vector<int> v;

 v.push_back(3);

 v.push_back(2);

 v.push_back(1);

 fun(v);

 for (unsigned int i = 0; i < v.size(); i++)

 cout << v[i] << endl;

}
This code obviously doesn’t compile. Remove const, recompile, run. Remove &, do the same.

Section 6.4 wraps up the vector part of this chapter. Note that you can easily have vector of objects.

Vectors have automatic memory management, unlike arrays, which are being discussed next.

Section 6.5 is a long section but it contains a lot of useful information for your problem P6.18 (which has

been posted on the website a while ago). Note that you can’t allocate arrays with Syntax 6.3 unless you

have a constant that is known at compile time. Note that this limitation is specific to Syntax 6.3 only.

Arrays of characters are the same as strings. Both review problems and programming exercises are

recommended if you’re not very sure about the syntax. The problem you need to solve is mainly about

two dimensional arrays rather than memory management.

In the next chapter we learn how name of arrays are just addresses to the starting point of a contiguous

area of memory. To solve the problem above just assume you are being given an array of a certain size,

already allocated, ready to be filled with values.

#include <iostream>

using namespace std;

void fun(int a[], int size) {

 a[0] = 100;

 for (int i = 0; i < size; i++)

 cout << a[i] << endl;

 cout << "------------------" << endl;

}

int main() {

 int a[] = {1, 2, 3}, size = 3;

 for (int i = 0; i < size; i++)

 cout << a[i] << endl;

 cout << "------------------" << endl;

 fun(a, size);

 for (int i = 0; i < size; i++)

 cout << a[i] << endl;

 cout << "------------------" << endl;

}
By default arrays seem to be passed by reference. We’ll see next chapter why.

#include <iostream>

using namespace std;

const int SIZE = 3;

void show(int a[][SIZE]) {

 for (int i = 0; i < SIZE; i++) {

 for (int j = 0; j < SIZE; j++)

 cout << a[i][j] << " ";

 cout << endl;

 }

 cout << "-------------------\n";

}

void magic(int a[][SIZE]) {

 int count = 0;

 for (int i = 0; i < SIZE; i++)

 for (int j = 0; j < SIZE; j++) {

 a[i][j] = count;

 count += 1;

 show(a);

 }

}

int main() {

 int a[3][3] = {{0, 0, 0}, {0, 0, 0}, {0, 0, 0}};

 magic(a);

}
Note that when passing a two-dimensional array to a function we must specify the number of columns

as a constant with the parameter type. The number of rows can be variable. You can define magic now.

Ch. 7: Pointers

Here’s the problem for this chapter:

These other two problems are also worth looking at:

In this chapter we learn to deal with memory locations better. Already 7.1 has a lot of material.

Let’s start from this:

#include <iostream>

using namespace std;

class Point {

public:

 Point(int x, int y) : x(x), y(y) { }

 void report() { cout << "Point (" << x << ", " << y << ")" << endl; }

 int x, y;

};

void fun(Point* p) {

 p->x += 1;

 p->y += 1;

 p->report();

}

int main() {

 Point* p;

 p = new Point(2, 3);

 (*p).report();

 fun(p);

 p->report();

}
Basic relationship between pointers and references.

When we pass a pointer as an argument we actually pass the value the pointer points to by reference.

Deallocating memory with delete, and the address operator (already used) are in section 7.2.

No garbage collector. Allocate memory in a function, delete it. Otherwise it persists.

NULL is a keyword indicating absence of value to point to.

A reference is a pointer in disguise.

#include <iostream>

using namespace std;

void show(int a[], int size) {

 for (int i = 0; i < 10; i++)

 cout << a[i] << " ";

 cout << endl;

}

int main() {

 int* a = new int[10];

 for (int i = 0; i < 10; i++)

 a[i] = 10 - i;

 show(a, 10);

}
There is an intimate connection between arrays and pointers in C++.

Stack vs. heap allocation.

Careful.

Arrays of objects.

Pointers to character strings and to functions. Pointer arithmetic.

#include <iostream>

#include <string>

using namespace std;

class Student {

public:

 string name;

 int age;

 Student(string name, int age) : name(name), age(age) { }

 void report() { cout << name << " " << age << endl; }

};

int main() {

 Student a("Larry Bird", 56);

 Student b = a;

 a.age = 57;

 a.report();

 b.report();

}
In which we have two Larry Birds.

int main() {

 Student* a = new Student("Larry Bird", 56);

 Student* b = a;

 (*a).age = 57;

 a->report();

 b->report();

}
In which there is only one Larry Bird.

#include <iostream>

#include <vector>

using namespace std;

void show(vector<vector<int>*> v) {

 for (int i = 0; i < v.size(); i++) {

 for (int j = 0; j < (*v[i]).size(); j++)

 cout << (*v[i])[j] << " ";

 cout << endl;

 }

 cout << "-------------------\n";

}

int main() {

 int size;

 cin >> size;

 vector<vector<int>*> a(size);

 for (int i = 0; i < a.size(); i++) {

 a[i] = new vector<int>(size);

 for (int j = 0; j < size; j++)

 (*a[i])[j] = 0;

 }

 show(a);

 int col = size / 2, row = size - 1;

 int k = 1;

 while (k <= size * size) {

 (*a[row])[col] = k;

 k += 1;

 int u = (row + 1) % size;

 int v = (col + 1) % size;

 if ((*a[u])[v] == 0) {

 row = u;

 col = v;

 } else {

 row -= 1;

 }

 show(a);

 }

}

Implementing the magic square program with two-dimensional vectors.

Ch. 8: Inheritance

This is one of the problems suggested for this clapter.

Answers

Small fonts just help you ignore these answers as long as possible.

#include <iostream>

using namespace std;

int main() {

 cout << "Please enter the first time: ";

 int timeOne;

 cin >> timeOne;

 cout << "Please enter the second time: ";

 int timeTwo;

 cin >> timeTwo;

 int t1 = timeOne / 100 * 60 + timeOne % 100;

 int t2 = timeTwo / 100 * 60 + timeTwo % 100;

 int diff = (t2 - t1 + 24 * 60) % (24 * 60);

 cout << diff / 60 << " hours and " << diff % 60 << " minutes" << endl;

}

#include <iostream>

using namespace std;

int main() {

 cout << "Please enter the year: ";

 int year;

 cin >> year;

 if (year % 4 == 0) {

 if (year <= 1582) {

 cout << year << " is a leap year.\n";

 } else {

 if (year % 100 == 0) {

 if (year % 400 == 0) {

 cout << year << " is a leap year.\n";

 } else {

 cout << year << " not a leap year.\n";

 }

 } else {

 cout << year << " is a leap year.\n";

 }

 }

 } else {

 cout << year << " not a leap year.\n";

 }

}

#include <iostream>

using namespace std;

int main() {

 cout << "Please enter the year: ";

 int year;

 cin >> year;

 if ((year <= 1582 && year % 4 == 0) || (year > 1582 && (year % 4 == 0 && year % 100 != 0 ||

 year % 4 == 0 && year % 100 == 0 && year % 400 == 0))) {

 cout << year << " is a leap year.\n";

 } else {

 cout << year << " is not a leap year.\n";

 }

}

bool isInside(Point p, Circle c) {

 return p.distanceTo(c.getCenter()) <= c.getRadius();

}

This is actually extremely easy.

