
C++ for Gamebryo: Review for the Introductory/Beginners’ Track

References:

 Ivor Horton’s Beginning Visual C++ 2008 (available on-line) and

 Programming (Principles and Practice Using C++) by Bjarne Stroustroup.

Lecture Five: Inheritance

#include <iostream>

using namespace std;

class Horse {

public:

 void talk() {

 cout << "Howdy! I'm a Horse." << endl;

 }

};

int main() {

 Horse a;

 a.talk();

}
Basic class description of a Horse.

#include <iostream>

using namespace std;

class Horse {

public:

 void talk() {

 cout << "Howdy! I'm a Horse." << endl;

 }

};

class Unicorn : public Horse {

};

int main() {

 Horse a;

 a.talk();

 Unicorn b;

 b.talk();

}
A Unicorn is a Horse with a horn. Here a Unicorn is a Horse with (so far) nothing else.

#include <iostream>

using namespace std;

class Horse {

public:

 void talk() {

 cout << "Howdy! I'm a Horse." << endl;

 }

};

class Unicorn : public Horse {

public:

 void talk() {

 cout << "Bonjour! I'm also a Unicorn." << endl;

 }

};

int main() {

 Horse* a = new Horse();

 a->talk();

 Unicorn* b = new Unicorn();

 b->talk();

 Horse* c = new Unicorn();

 c->talk(); // [1]

}

Basic polymorphism: a Unicorn is a Horse. But what if we want to get the French greeting at [1]?

#include <iostream>

using namespace std;

class Horse {

public:

 virtual void talk() {

 cout << "Howdy! I'm a Horse." << endl;

 }

};

class Unicorn : public Horse {

public:

 virtual void talk() {

 cout << "Bonjour! I'm also a Unicorn." << endl;

 }

};

int main() {

 Horse* a = new Horse();

 a->talk();

 Unicorn* b = new Unicorn();

 b->talk();

 Horse* c = new Unicorn();

 c->talk();

}
Declaring the functions virtual ensures that they will be selected by the object (not reference) type.

 Homework Five

Define a few classes describing objects with an area in the plane: Circle, Rectangle, Triangle. In your

main program create a few objects of this kind (a few Circles, a few Rectangles and a few Triangles) and

store them in a vector. Then go through the vector and ask the objects to report their areas.

#include <string>

#include <vector>

#include <iostream>

using namespace std;

class Shape {

public:

 virtual string area() {

 return "I'm just a generic shape...";

 }

};

class Circle : public Shape {

public:

 virtual string area() {

 return "I'm a circle.";

 }

};

class Rectangle : public Shape {

public:

 virtual string area() {

 return "I'm a rectangle.";

 }

};

class Triangle : public Shape {

public:

 virtual string area() {

 return "I'm a triangle.";

 }

};

int main() {

 Triangle* t = new Triangle();

 Circle* c = new Circle();

 Rectangle* r = new Rectangle();

 vector<Shape*> shapes;

 shapes.push_back(t);

 shapes.push_back(c);

 shapes.push_back(r);

 for (unsigned int i = 0; i < shapes.size(); i++)

 cout << shapes[i]->area() << endl;

}
Dynamic method lookup for specific shapes. Does it make any sense to call area() on a generic shape?

