C++ and Gamebryo: Introductory Material for the Intermediate/Advanced Track

. Lecture Seven: On to Gamebryo

In what follows we will be using the Gamebryo documentation.

ccessore T ¥ S S
Emergent @ o @
. Hid Locat H Print ~ Opti Fi
. Gamebryo 2.5 Evaluation e cete ome __ Pint _ Uptions _Forum
| Gamebryo 26 Binary Conterts | i | gearch | Favores | Welcome to Gamebryo
@ Documentation] Welcome to Gamebryo
g : @ Getting Started with Gamebryo Welcome to the documentation for Em
[Gamebryo 2.6 Documentation } @ What's New in Gamebryo Gamebryo game development system,
Demos @ Leaming Gamebryo development kit contains software com
@ Atist's Guides all members of a game development te
FullDemos : @ Programmer’s Guide) P
3 - Tool Manuals This Gamebryo distribution includes to

 Tools | - Refarence plug-ins for 3ds max and Maya, and an

C L1y 1

How you call it and how it starts. Note the various chapters in the Gamebryo documentation.

We’ve looked at the first new chapters (Getting | Cortents | index | Search | Favortes | Welcom
Started with and What's New in Gamebryo) to Welcome to Gamebryo
. [+ Getting Started with Gamebryo Welcome to
some extent, already. We also already examined 4@ What's New in Gamebryo game develc
the first tutorial. There are 8 more we will look at. -2 Leaming Gamebryo This Gameb
- [7] Irtroduction to Leaming Gamesbryo 15 ame
Loy o o+ s g @ Renderer Settings Dialog demos. sar
2] Tutorial 8: Screen Textures E-J[EI Tutortals See the app
E Tutorial 9: Rendered Textures g Overview of Gamebryo Tutorials
tro to Gamebryo PhysX| E-AL Intre to Gamebryo
----- 2] Introduction to the Gamebryo-PhysX, Tutorial - [2] Intro to Gamebryo
----- 2] Gamebrya-PhysX Tuterial Cartrols - [2] Tutorial 1: Renderers
----- (2] PhysX Tutorial - Inttializing the SDK - 2] Tutorial 2: Nf Fies
----- 7] PhysX Tutorial - Ball in a Bax - [2) Tutorial 3: Shaders
----- 2] PhysX Tutorial - Kinematic Actors - [2] Tutorial 4: Scene Attachment
----- 2] PhysX Tutorial - Asynchronous Simulation E Tutorial 5: Transforms
2 Animation Tool L E Tutorial 6: Time Cortrollers
----- E Irm.'odu.dion to the Al.'nimation Tool Tutorials . E Tutorial 7: Ussr Input
----- E Animation Tool Tuterial 0: Getting To Know the Tool Environment E Tutorial 8 Screen Testures
----- z Animation Tool Tutorial 1: Adding and Previewing Sequences E Tutorial 9: Rendered Textures
----- ﬂ Animation Tool Tutorial 2: Working with Transitions []--@ Intro to Gamebryo PhysX
----- ﬂ Animation Tool Tutorial 3: Using the Interactive Preview F——
mat! ' []--@ Animation Tool
----- E Animation Tool Tutoral 4: Sequence Groups]
e) []--@ Scene Designer
..... E Animation Tool How-To 1: Changing Sequence 1Dz []"@ Demos
----- E Animation Tool How-To 2: Midng Characters and Seguences
E-A[]) Scene Designer ;% stFlullﬁDnladmos
..... ﬂ Scene Designer Tutorals Introduction []..@ P S8l ?SG id
----- 2] Scene Designer Tutorial 0: Getting to Know the Tool Environment B rogrammers \auas
----- 2] Scene Designer Tutorial 1: Using Palettes D"Q Toal Manuals
----- E Scene Designer Tutorial 2; Using the Interaction Modes D"Q Reference
----- E Scene Designer Tutoral 3: Creating a Basic Scene
""" 2] Scene Designer Tuorial 4: Seffing Lp and pinizing Lighing As we can see on the left there are also tutorials on
----- ﬂ Scene Designer Tutorial 5: Creating Temain . A A
- @ Demos PhysX, Animation Tool and Scene Designer.
Y

A listing of all the tutorials in the Gamebryo documentation (right, then left image).

We'll take the tutorials one by one to see what we can learn from each.

Tutorial 1: Examining the Niapplication Framework.

Our tutorials are built on the niapplication framework. The wniapplication framework provides a
convenient method for quickly developing cross-platform applications. By default, niapplication hides
many of the mundane implementation details that are required to create a simple Gamebryo
application. One of these hidden details is renderer creation. It is, however, a simple matter to override
the default virtual NiApplication: :CreateRenderer function which we do in this tutorial in order
to illustrate how to create a platform specific renderer. After creating the platform specific renderer, we
set the background color to red to see that our renderer is working as expected.

J Solution Tuterialdl' (1 project)
5. |5 Tutorial01

5 [Header Files

] Renderers.h

[Inline Files

—|- L& Resource files

|| NiApplicationResource.hre

Lo 4 NikpplicationResource.re
|- Source Files

: ¢+ Renderers.cpp

¢+ Renderers_Win32.cpp

Though not terribly exciting, this tutorial illustrates how to
create a Gamebryo renderer (a first step for users creating
custom game frameworks). In subsequent tutorials, we won't
bother overriding NiApplication::CreateRenderer as
the one provided by the NiApplication framework is
adequate for our purposes. As noted above, one of the
services the framework provides by default is the creation of
a renderer. However, the use of NiApplication is optional, and
many users may decide to write their own application
framework or extensions. This tutorial demonstrates basic
renderer creation for those users.

We'll summarize tutorials like this, to get a bird’s eye view of the code and tutorial’s overall purpose.

Code discussion:

As in all Gamebryo applications, the customer
be embedded for

license code must
application to link correctly:

In this tutorial, the relevant code for the platform
platform specific renderer creation lies in our
overloaded CreateRenderer function. Since the
code is platform dependent, we have separated the

the

LM LU | o el O L P Rl E el B R I

$include <HNiLicense.h>

HiEmbedGamebryoLicenseCode;

source into platform specific files and directories
for ease of project management. This separation is
also a good idea in regards to platform specific
assets which is illustrated in Tutorial 2: Nif Files.

Notes:

will continue to enumerate these

In Lecture Six we listed some (most, if not all) of the settings for a typical Gamebryo project. We

settings individually despite the fact that we might be able to

hid that complexity with a template of settings, or a property sheet.

There should be one more C++ lecture between Lectures Five and Six. Postponed for now.

For us, this first tutorial is more about NiApplication that anything else, custom renderers

included. NiApplication. Turns out that NiApplication is just one of several platform-

independent application layers included with Gamebryo, along with NiSample, NiCursor,

NiInput, and NiFont and a few others. We discuss this briefly below.

mk:@MSITStore:C:\Emergent\Gamebryo-2.6-Binary\Documentation\HTML\Gamebryo.chm::/Reference/AppFrameworks/NiApplication/NiApplication_Basics/Introduction_to_NiApplication.htm
mk:@MSITStore:C:\Emergent\Gamebryo-2.6-Binary\Documentation\HTML\Gamebryo.chm::/Reference/AppFrameworks/NiApplication/NiApplication_Basics/Introduction_to_NiApplication.htm
mk:@MSITStore:C:\Emergent\Gamebryo-2.6-Binary\Documentation\HTML\Gamebryo.chm::/Reference/AppFrameworks/NiApplication/NiApplication_Basics/Introduction_to_NiApplication.htm

If you search the documentation for NiApplication you eventually get to this:

5 Ganeose 26 soumereio S
RN A B~ [9

Hide Locate Back Forward Home Print Options Forum

Cortents | [nd Search | Fi i H
s | Index | Search | Favorges | Introduction to AppFrameworks

@ Welcome to Gamebnyo

-8 Getting Started with Gamebryo The following Gamebryo libraries are documented hera:
- @ What's New in Gamebryo

@ Leaming Gamebryo

@ Artist’s Guides s MiApplication
@ Programmer's Guide e NiSample
- @ Tool Manuals Nioample

=-\[J] Reference « NiTerrain
Introduction to the Reference Section

EI'IJ_TI AppFramework s NiTerrainPhysk

----- Introduction to AppFrameworks « UtilityLibs

=) Nifpplication

: @ MiApplication Basics s MiCursor

@ MiApplication Class Reference
@ NiApplication-WinMain » NiEntity

E - NiApplication Win32 Specifics e NiFont

@ NiSample

g NiTemain ¢ Milnput

[+ i NiTemainPhys*

7@ U s o NiMetricsOutput
¢4 Corelibs s Nilserinterface
- i@ CorelibsPhysX -
- Toollibs o NiVisualTracker

NiApplication and NiSample are used by virtually all the samples that ship with the evaluation SDK.
These layers hide the underlying operating system, windowing system, and low-level Gamebryo setup.
Although a customer may choose to use these layers, it is not necessary nor recommended to do so,
if, for example, your application requires more than basic input handling. A simple application that does
not use NiApplication is shown in: {GAMEBRYO INSTALL PATH}\Samples\Demos\SimpleApp.

Note this information is available at:

po 4] WYL LD \adiiemnya

=8 E@ Getting Started with Gamebryo

El E@ Getting Started with Gamebryo

. Where To Begin

- [2] Documentation Overview

- [2] Information For Arists and Designers

. Information For Mew Gamebryo Developers

. 7] Information For Experenced Gamebryo Developers
----- r‘l Refaranra Naroment atinn

See Section 4: System Details on this page.

Next, let’s discuss NiApplication briefly.

Contents | Index] Search] Favortes]

@ Tool Manuals
Ell:ﬂ Refersnce
- [2] Introduction to the Reference Section

EI':EI AppFrameworks

e @ Introduction to AppFramewarks

SRVH] NiApplication

=[] Nifpplication Basics

----- E Introduction to NiApplication

----- E Usage of NiApplication in Gamebryo

----- E Motes About Using Mifpplication With Your Game
----- E Basic Object Creation

----- E User Input

----- E MiApplication and the Frame Rendering System
----- E MiApplication and NiVisual Trackers

----- E Commonly Ovemidden Methods in MNifpplication
----- E| MiTumret Usage

Eﬂ--@ MiApplication Class Reference

EJ--@ MiApplication—¥WinMain

EJ--@ MiApplication Win32 Specfics

Eﬂ--@ MiSample

Eﬂ--@ MiTemain

- NiTemainPhys¥

=@ UtilityLibs

Eﬂ--@ Corelibs

-4 CoreLibsPhysX

NiApplication is a thin platform-independent wrapper for Gamebryo sample applications. It is
designed to wrap platform-dependent functions so that an application can be written for one platform
and run on the other platforms that Gamebryo supports. NiApplication handles tasks such as
window creation, renderer creation, creation of an input system, and providing access to the command
line. Source code for NiApplication is included in all Gamebryo releases, including evaluation
releases. So we could look at the code, to see how it’s been defined, although we won’t just for now.

An application that uses NiApplication must explicitly link the NiMain and NiSystem libraries, as
well as any other Gamebryo libraries it uses. On Win32, the appropriate renderer library is automatically
linked in via #pragma comment compiler directives. NiApplication was designed as a basic starting
point to get applications running quickly on multiple platforms. Developers will likely find that there are
many parts of it that they want to either extend or simplify. For larger applications and games,
developers should look carefully at the services NiApplication provides and override the functions it
provides as required by their application. However, building on top of NiApplication is an excellent
way to get started quickly, and being familiar with it will help you understand the code in our samples.

The rest will be covered in context in the tutorials that follow. Gamebryo supports streaming of scene
graphs, cameras, lights, and other objects to and from disk. Gamebryo accomplishes this streaming
through the use of its own native NIF file format. This native file format is not intended to be a

competitor to other well-accepted file formats, but it does provide Gamebryo users with a convenient
way to handle persistent storage during the application development cycle. For more information:

- Atists Guides There are two basic ways to create NIF files:
=5 [:@ Programmer’s Guide

------ @ Introduction to the Programmer's Guide

EI ([J] General Topics 1. Exporting from Comm.ercial Modeling Packages: the
=@ Programming Basics Gamebryo 3ds max Plug-in and Gamebryo Maya Plug-in
@ Programming for & Scene Graph enable users to save data in Gamebryo format without
@ Programming for Scene Rendering leaving the modeling application.

: @ Programming Special Effects

E‘ ([Programming for Content Import and Export 2 \writing out Application-created Scenes: applications

=wﬂhe Application el 1o+ create their own scenes can easily write their

scenes to disk as NIF files. The application may have
------ - [2] Loading NIF Files
e ... [3] How NIF File 1/0 Works created the scene procedurally, such as a fractal
- @ Programming Optional Features landscape, or by writing an importer for the developer's
- Programming for High Performance own (possibly proprietary) file format. Please see
- Programming for Memory Usage Object Systems for details on the use of these objects.
@ Programming Skinned Objects
With Threads This method is particularly useful for Gamebryo users
q with large libraries of models that were generated in an
- — older model format (e.g., a Quake Il file).

Tutorial 2 shows how to load a NIF file.

Tutorial 2: Further Examining the Gamebryo AppFrameworks.

In this tutorial, we cover loading a Nif file from disk using Gamebryo's NiStream class. During our
coverage of this topic, the virtues of having platform specific Nif files and assets separated into platform
specific folders is pointed out. Simple scene graph traversal is also touched on, as well as an introduction
to various Gamebryo classes whenever they arise in the code. In this demo, our scene is loaded from the
file "wORLD.NIF". After the scene is loaded into memory, the application traverses the scene graph in
order to find an in-scene camera. Once the application finds the in-scene camera, it replaces the default
NiApplication camera with the one it found. Afterwards, the application relies entirely on
NiApplication's default onIidle call for handling rendering and such. When the application runs, a
village with a remote control in the lower-center portion of the screen will be seen.

A Solution ‘Tutoriald2' (1 project) Note that this sample switched from derivation from
- E NiApplication 10 NiSample. NiSample iS an NiApplication
5. [Header Files derived class that adds a standardized user-interface, navigation,
o] NIF_Files.h and simplified shader system setup. This particular tutorial does

----- [Inline Files not take advantage of the shader system setup routines, and
= | Resource files therefore the ground will appear incorrect. Depending on your

----- || NiApplicationResource.hre| platform, this may produce debug warnings. We'll solve this
.. 4 NiApplicationResource.rc | problem in the next tutorial, Tutorial 3: Shaders, which will

- [Source Files introduce how to bring shaders into Gamebryo. The discussion
‘... €4 NIF Files.cpp now addresses the relevant code from this second tutorial.

http://beautifulpixels.blogspot.com/2008/10/is-gamebryo-good-middleware.html (re: Netimmerse)

mk:@MSITStore:C:\Emergent\Gamebryo-2.6-Binary\Documentation\HTML\Gamebryo.chm::/Artist_s_Guides/Gamebryo_3ds_max_Plug_in/Introduction.htm
mk:@MSITStore:C:\Emergent\Gamebryo-2.6-Binary\Documentation\HTML\Gamebryo.chm::/Artist_s_Guides/Gamebryo_Maya_Plug_in/Maya_Plug_in_Introduction.htm
mk:@MSITStore:C:\Emergent\Gamebryo-2.6-Binary\Documentation\HTML\Gamebryo.chm::/Programmer_s_Guide/Object_Systems/Object_Systems_General/Introduction_to_Object_Systems.htm
mk:@MSITStore:C:\Emergent\Gamebryo-2.6-Binary\Documentation\HTML\Gamebryo.chm::/Reference/CoreLibs/NiMain/NiMain_Class_Reference/NiStream.htm
http://beautifulpixels.blogspot.com/2008/10/is-gamebryo-good-middleware.html

Homework Seven

Using the information and resources available find and load a(nother) Nif file, just like in Tutorial 2.

Solution Explorer - Nine s Selution Explorer - Solution 'Ming
X |l Solution 'Mine' (1 project) 0
[Selution 'Mine' (1 project) - [Header Files [Solution 'Nine' (1 project)
El gﬂm - [Resource Files EI E Nine
..... [_1 Header Files v ij Add ¥ |] Newlem.. EI L:t‘- Header Files
----- [Resource Files % | cut El| Existing Iter . |h] something.h
“er L Source Files Z3 Copy i | New Fitter 1 Resource Files
= L Source Files
| start by defining a new project (Nine). | add a .cpp and a .h file to the S| something.cpp
project (some name) and | describe their contents in detail below.

We start with these:

I #ifndef SOMETHING H
#define SOMETHING H

<HiMain.h>
<Nifnimation.h>
<HiParticle.hX>
<NiLicense.h>

g #include
#include
#include

$include <MNiSample.h> finclude

Jclass something @
public:
something(); //

public NiSample {
NiEmbedGamebrvoLicenseCode;

default constructor

ir

#endif

Project | Build Debug Tools Test Win
% | Add Class...

| AddNewltem.. Cirl+Shift+A

i | Add Existing ltem... ~ Shift+Alt+A

Exclude From Project
21 | Show All Files
Set as StartUp Project

Mine Properties... Alt+F7

ONikpplication* NihApplication::Create() {
recurn NiNew something:

H something: :something () : NiSample
[("Ckay, are yvou ready?",
DEFAULT WIDTH,
DEFAULT HEIGHT,

crue)

We're currently aiming for the minimal setup that would force us to review the shortest number of
settings required to build (compile, link) and run the project. We’ve done this twice by now, so we know
that we’ll have to look into Configuration Properties: C/C++ and Linker mostly (see snapshot below).

Mine Property Pages Framework and Referer] B rrar‘nex-\.rnrlc T m-.-.uur:nce:
. . . 4 Configuration Properties
4 Configuration Properties
N General
MY A General Debuaai
Debugging Fougging
4 Common Properties 4 CfC++ N\ - GG+
Framework and References General /A4 Linker \
: : : . General
4 Configuration Properties Optimization
General Preprocessor Ir:‘pui il
i Code Generation ant ESF e
Language 3 Debugging
Precompiled Headg S}rst.err?)
Output Files Optimization
+ XML Docurnent Generator Browse Informatioh Embedded IDL
» Browse Information Advanced Advanced _
. Build Events Command Line \ C_Dmmand Line)
» Custom Build Step ,\tm'key—/ g
WhAl Mo e L T oL
_ BManifact Tanl

That’s where most of our settings are located, as we well know by now.

Linker:

e Input: Additional Dependencies (NiSample.lib, NiFont.lib, NiSystem.lib, NiFloodgate.lib,
NiMain.lib, NiMesh.lib, NiAnimation.lib, NiParticle.lib, NiApplication.lib, NiVisualTracker.lib,
Nilnput.lib, NiUserInterface.lib, NiCursor.lib)

e General : Additional Library Dependencies ([...]\sdk\Win32\Lib\VC90\DebugLib)

e Advanced

e General: Additional Include Directories ([...]\sdk\Win32\Include)
e Preprocessor WIN32; DEBUG;_WINDOWS;NIDEBUG
e language:

Now things will compile, but when we try to run (start without debugging) we get:

[5A Solution 'Nine' (1 project)

Resources Error ﬁ & [Nine

B . Header Files

1 El #inclu
i| #inclu

: i #inclu
P] something.h | #inciu
, i . R | Feso e
Error: Resource files are not linked in.
Add 2 .
Please link file NiApplicationResource.rc = Lj:wr il | Newltem...
into your project. This file can befoundin -~ [F | | & | Cut 2 Existing Item...
SDKNWin32\Resource, 23 | Copy 4| NewFilter
b | Paste #% | Class...
| X | Remove “% | Resource...
e
[Rename Ca

Properties

someth

So we add the resource (existing item...)by browsing for it first and locating it.

&5 Add ExistingItem - Nine S0 S e 0

v|7L; <« sdk » Win32 » Resource v | ‘yl ’Search

Eavoiite Faks NameA Date modif... Type Size
E] Bacarienis uNlAppllcatlonResource.aps

: __ NiApplicationResource.hrc
Ju Projects : - —

@ NiApplicationResource
B Desktop & NiPluginToolkit
%5l Rerent Dlarec
File name: NiApplicationResource - [MH&B(‘.'} ']
' | add |+] | Ccancsl

Eventually the project looks like this:

m Solution 'Mine' (1 project)
= (A Nine
E| [Header Files
- \n] something.h
O csource ies
o (=24 MilpplicationResource.rc
E| [Source Files
- ¢ something.cpp

We can now build the project (compile and link) and run it.

Output Log

Frame Rate: 100.0
To hide the log and all Ul elements, press Z' on a keyboard o left
analog stick press on a Gamepad.

Navigation Controller Type: "Flying" Mode

We now need to load a Nif file. So we make the following changes:

#ifndef SOMETHING H
#define SOMETHING H

#include <NiSample.h>

class something : public NiSample {
public:
something(); // default constructor
virtual bool CreateScene();

}i

#endif

This is what something.h becomes (one virtual method has been added).

#include <NiMain.h>
#include <NiAnimation.h>
#include <NiParticle.h>
#include <NiLicense.h>

NiEmbedGamebryoLicenseCode;
#include "something.h"
NiApplication* NiApplication::Create() { return NiNew something; }

something::something () : NiSample ("Okay, are you ready?",
DEFAULT WIDTH,
DEFAULT HEIGHT,
true)
{
SetMediaPath ("C:/Users/cogli/Desktop/data/"); // your path here

}

bool something::CreateScene ()

{
// NiStreams are used to load a NIF file from disk. [...]

NiStream kStream;

// Load in the scenegraph for our world...
bool bSuccess = kStream.Load (NiApplication::ConvertMediaFilename ("WORLD.NIF")) ;

if (!bSuccess)

{
NiMessageBox ("WORLD.NIF file could not be loaded!", "NIF Error");

return false;

m spScene = (NiNode*) kStream.GetObjectAt (0);
NIASSERT (NiIsKindOf (NiNode, m_spScene)) ;

return bSuccess;

}

At this point the file is loaded and is visible. The rest of the details can be found in Tutorial 02 code.

The relevant code

In Wikpplication-based apps, we use SetMediaPath to specify the data folder that contains all of the relevant media files.

NIF_Files::NIF Files({) : NiSample ("Tutorial: Loading And Rendering a NIF File",
DEFRULT _WIDTH, DEFAULT HEIGHT, true)

{

§if defined (_XENCH)
SetMediaPath {"D:/DATA/");

gelif defined (WIN3Z)

SetMediaPath("../ ../ . /DATA/");
felif defined (_P53)

SetMediaPathi("../ ../ .. /.. /Data/");
gendif

m bUseNavSystem = false;

Now that we have set our media path, we can create the scene and load our assets in a platform independent manner. In this tutorial, we override the
Wikpplication: :CreateScens method. Let's now take a look at the code for the CreateScens function.

bool NIF Files::CreateScene ()
{

It is often a good idea to add an alpha accumulator to your renderer. This way, if your scene happens to have alpha textured objects, they will get drawn
correctly. Adding an alpha accumulator to a renderer is easy and can be done with the following two lines.

NiRlphafcocumlator®* pkRcocum = NiNew NiRlphelccumulator;

m spRenderer->SetScorter (pkiccum);

The HiStream class will become a familiar class when you find that you need to load scene graphs that have been exported by one of Gamebryo's
exporter plug-ins or as you want to load scene graphs that have been previously saved out (using HisStcream) by your own applications. In the lines below,
we declare an HisStreamvariable, and call its Load function to load our desired Mif file. We use Nikpplication: :ConvertMediaFilename, which
uses the path specified in SetMediaPath to generate the complete path to the specified asset.

NiStream kStream;
bool bSuccess = kStream.Load|(

Nizpplication: ::ConvertMediaFilename ("WORLD.NIF™));

As you see above, kStream: : Load returns a boolean to indicate success or failure of loading the file. Error checking is always a good idea. In the
following code, if an error is detected, we use Gamebryo's NiMessageBox to give feedback that an error occurred before failing out of CreateScene.

if (!bSuccess)
{
NiMessageBox ("WORLD.NIF f£ile could not be loaded!™, "NIF Error™);

return fzlsze;

Once the file has been loaded into the stream, the stream will contain one or more "top-level” objects. These objects could be HiNode objects,
HiTexture objects, or any of many other Gamebryo objects. Both the Max and Maya exporters always place the root node of the scene graph as the
first element in the Niffile. We can exploit this fact by assigning the first object in the stream to m_spScene. Because we overrode the CreateScene

function, NiZpplication's member m_spScene will not have previously been assigned. However, it should be noted that had it been previously
assigned, say to a newly allocated Hilode, the following assignment would not orphan the allocated node. The reason is that Hifpplication's

m_spScene is a reference counting HiSmartPointer (hence the "sp” notation INm_spScene). After the assignment, we assert that our
assumption (that the first object was the root node of the scene) was valid. We use NiIsKindoOf (See the docs on Run-Time Type Information for more

info on this macra) to determine if m_spScene is really a type of Hillode.

m spScene = (NiNode*) kStream. GetChjectht(0);
NIASSERT (NiIsKindOf (NiNode, m spScene));

Because we have exported the scene and we know what types of objects are in our scene, we can write code to look for those specific objects. In the next
few lines of code, we call a function to find a camera in the scene graph. Once found, the function also assigns the camera to our application's camera
smart pointer. This is useful because now we can use a camera that an artist has set up and do not have to figure out the parameters for setting one up
programmatically.

if (!FindSceneCamera())
{
NiMessageBox ("The NIF file has no camera!™, "Camera Error");

return false;

That is it for CreateScene. If we have reached this far, we can simply return success!

return bSuccess;

Now let's take a look at our FindSceneCamera. As can be seen in the code below, FindSceneCamera simply assigns the Nilpplication's
m_spCamera to the result of our recursive function FindCamera (described later).

bool NIF Files::FindSceneCameral)

{
if (m_spScene)
{
m spCamera = FindCamera({m spScene);
}
return (m spCamera != NULL);
}

MNow let's turn our attention to the recursive function FindCamera which is listed after this section. The FindCamera function takes an i
its sole parameter. As we saw in the FindSceneCamera code, m_spScene is initially sent as the parameter to FindCamera. It can do this because
m_spScene is an Milode which means that it is also an NizvOobiect. The first thing that FindCamera does is to check whether or not the object
passed in is an MiCamexa or not. If it is, we have found our camera and are finished. We simply return the camera. If the object, however, is not an
MiCamera, the code then checks to see if the object is an WiNode. fit is an Hillode, then it is possible that there are child objects. The code
recursively passes any children to FindCamera and if any camera is found, it returns it. Finally, if the object passed into FindCamera was neither an
HiCamera or Milode, the code simply returns NULL indicating that no camera was found.

Chiect as

This sort of scene traversal code is fairly common. When the recursion is simple, the traversal logic in NiTHodeTraversal can be used. This tutorial
uses FindCamera as an easy example of sceen traversals, the complete listing is below. Most samples. however, use a convenience function
Nispplication::FindFirstCamera()

WiCamera* NIF_Files::FindCamera (NiAWCbject* pkObject)

{
if (NiIsEindOf (NiCamera, pkObject))
{
return (NiCamera*) pkCbject;
}
else if (NiIsEindOf (NiNode, pkObject))
{
HiNode* pkNode = (NiMNode*) pkCbject:
for {(unsigned int ui = 0; ui < pkNode-»GetiArrayCount(); ui++)
{
NiCamera* pkFoundCamera = FindCamera (pkNode->Getit{ui));
if (pkFoundCamera)
return pkFoundCamera;
}
}
return NULL;
}

This concludes the tutorial.

