
C++ for Gamebryo: Review for the Introductory/Beginners’ Track

References:

 Ivor Horton’s Beginning Visual C++ 2008 (available on-line) and

 Programming (Principles and Practice Using C++) by Bjarne Stroustroup.

Lecture Two: Functions

Functions are the way we represent actions and computations. Whenever we want to do something

that is worthy of a name, we write a function. The simplest way of passing an argument to a function is

to give the function a copy of the value you use as an argument. This is called pass-by-value.

#include <iostream>

#include <vector>

using namespace std;

void display(vector<int> v) {

 for (unsigned int i = 0; i < v.size(); i++)

 cout << v[i] << " ";

 cout << endl;

}

void fun(vector<int> v) {

 v[v.size()-1] = -1;

 v[0] = 2;

 cout

 << "After passing it to fun and changing "

 << "its first and last elements: \n ";

 display(v);

}

int main() {

 vector<int> v(6);

 cout << "This is the vector in the main program: \n ";

 display(v);

 fun(v);

 cout << "The vector in main after fun finished: \n ";

 display(v);

}
Passing a vector argument by value to a function. Both fun and display get their argument by value. This

means each one of them receives a full-blown copy of the vector v. One of the functions (display) only

prints the copy, the other one (fun) changes it a bit. But changes are not seen in the caller program. This

is obvious even though display always gets a copy to print. To drive this point home even further let’s

examine the basics of copying, see below.

#include <iostream>

#include <string>

using namespace std;

int main() {

 string a = "on", b;

 b = a;

 b += "e";

 a += "ce";

 cout << a << " " << b << endl;

}
Both a and b are initialized when they are declared. When we assign a to b we create a copy of the value

that a has and pass it to b, which now points to this copy. Changing a and b separately is now possible.

#include <iostream>

#include <vector>

using namespace std;

void display(const vector<int>& v) {

 for (unsigned int i = 0; i < v.size(); i++)

 cout << v[i] << " ";

 cout << endl;

}

int main() {

 vector<int> a(6), b;

 b = a;

 a[0] = 2;

 a[a.size() - 1] = -1;

 display(a);

 display(b);

}
What happens when function fun receives its argument, in slow motion. But notice the change.

Pass by value is simple, straightforward, and efficient when we pass small values, such as int, a double,

or a Point. But what if the value is large, such as an image, a large table of values, or a very long string?

Then, copying can be costly. In the code above we changed the way the argument v is passed to display.

The & means reference and the const is there to stop display to modify its argument by accident. Pass

by const reference is a useful and popular mechanism. But what if we did want a function to modify its

arguments? Let’s consider references from a more technical point of view:

#include <iostream>

using namespace std;

int main() {

 int one = 7; // an int variable

 int& two = one; // two is a reference

 two += 2; // through reference two, one changes

 cout << one << " " << two << endl; // same value printed

}

Passing a plain reference to a function eliminates the copying and allows the function to make changes.

#include <iostream>

#include <vector>

using namespace std;

vector<double> read_inputs() {

 vector<double> result;

 cout << "Please enter values, Q to quit:" << endl;

 bool more = true;

 while (more) {

 double input;

 cin >> input;

 if (cin.fail()) more = false;

 else result.push_back(input);

 }

 return result;

}

void modify(vector<double>& a) {

 for (unsigned int i = 0; i < a.size(); i++)

 a[i] += 2;

}

void display(const vector<double>& v) {

 for (unsigned int i = 0; i < v.size(); i++)

 cout << v[i] << " ";

 cout << endl;

}

int main() {

 vector<double> v = read_inputs();

 display(v);

 modify(v);

 display(v);

}
One of the functions works with the standard input and collects floating-point numbers, in a vector. The

vector is stored in the caller program. Another function modifies the values in the vector by adding 2 to

them. Finally the display function is called twice, before and after modify, to show what’s happening.

Pass by reference is clearly a very powerful mechanism: we can have a function operate directly on any

object to which we pass a reference. Here are some thoughts on when to use each of the parameter

passing mechanisms we have outlined above:

 use pass by value to pass very small objects

 use pass by const reference to pass large objects that you don’t need to modify

 return a result rather than modifying an object through a reference argument

 use pass by reference only when you have to

These rules lead to the simplest, least error-prone, and most efficient code, says Stroustrup.

 Homework Two

Write a function that receives two vectors of ints v1 and v2 (must have the same size) as arguments. The

function should rearrange the values in the two vectors as follows: make each element in v1 the larger

of the corresponding elements in v1 and v2; similarly, make each element of v2 the smaller.

#include <iostream>

#include <vector>

using namespace std;

void separate(vector<int>& v1, vector<int>& v2) {

 for (unsigned int i = 0; i < v1.size(); i++)

 if (v1[i] < v2[i]) {

 int temp = v1[i];

 v1[i] = v2[i];

 v2[i] = temp;

 }

}

void display(const vector<int>& v) {

 for (unsigned int i = 0; i < v.size(); i++)

 cout << v[i] << " ";

 cout << endl;

}

int main() {

 vector<int> a(6), b(6);

 for (unsigned int i = 0; i < a.size(); i++) a[i] = i;

 for (unsigned int i = 0; i < b.size(); i++) b[i] = b.size() - i - 1;

 display(a);

 display(b);

 cout << "----------------\n";

 separate(a, b);

 display(a);

 display(b);

}

Using pass by reference arguments is the only reasonable choice for such a function.

