C++ for Gamebryo: Review for the Introductory/Beginners’ Track

References:

e |lvor Horton's Beginning Visual C++ 2008 (available on-line) and
e Programming (Principles and Practice Using C++) by Bjarne Stroustroup.

= Lecture Five: Inheritance

#include <iostream>
using namespace std;

class Horse {
public:
void talk() {
cout << "Howdy! I'm a Horse." << endl;
}
}i

int main () {
Horse a;
a.talk();
}

Basic class description of a Horse.

#include <iostream>
using namespace std;

class Horse {
public:
void talk () {
cout << "Howdy! I'm a Horse." << endl;
}
}i

class Unicorn : public Horse {
}i

int main () {
Horse a;
a.talk();
Unicorn b;
b.talk();
}

A Unicorn is a Horse with a horn. Here a Unicorn is a Horse with (so far) nothing else.




#include <iostream>
using namespace std;

class Horse {
public:
void talk () {
cout << "Howdy! I'm a Horse." << endl;
}
}i

class Unicorn : public Horse {

public:
void talk () {
cout << "Bonjour! I'm also a Unicorn." << endl;
}
}i
int main() {
Horse* a = new Horse():;
a->talk();
Unicorn* b = new Unicorn();
b->talk ()

Horse* ¢ = new Unicorn();
c->talk(); // [1]
}

Basic polymorphism: a Unicorn is a Horse. But what if we want to get the French greeting at [1]?

#include <iostream>
using namespace std;

class Horse {
public:
virtual void talk() {
cout << "Howdy! I'm a Horse." << endl;
}
}i

class Unicorn : public Horse {
public:
virtual void talk() {
cout << "Bonjour! I'm also a Unicorn." << endl;
}
}i

int main () {
Horse* a = new Horse();
a->talk();
Unicorn* b = new Unicorn{();
b->talk ()
Horse* ¢ = new Unicorn();
c->talk();

}

Declaring the functions virtual ensures that they will be selected by the object (not reference) type.




Homework Five

Define a few classes describing objects with an area in the plane: Circle, Rectangle, Triangle. In your
main program create a few objects of this kind (a few Circles, a few Rectangles and a few Triangles) and
store them in a vector. Then go through the vector and ask the objects to report their areas.

#include <string>
#include <vector>
#include <iostream>

using namespace std;

class Shape {
public:
virtual string area () {
return "I'm just a generic shape...";
}
}i

class Circle : public Shape {
public:
virtual string areaf() {
return "I'm a circle.";
}
}i

class Rectangle : public Shape {
public:
virtual string area() {
return "I'm a rectangle.";
}
}i

class Triangle : public Shape {
public:
virtual string area() {
return "I'm a triangle.";
}
}i

int main () {

Triangle* t = new Triangle();

Circle* ¢ = new Circle();

Rectangle* r = new Rectangle();

vector<Shape*> shapes;

shapes.push back(t);

shapes.push back(c);

shapes.push back(r);

for (unsigned int i = 0; i < shapes.size(); i++)

cout << shapes[i]->area() << endl;

}

Dynamic method lookup for specific shapes. Does it make any sense to call area() on a generic shape?




