블로그 이미지
Every unexpected event is a path to learning for you. blueasa

카테고리

분류 전체보기 (2797)
Unity3D (853)
Programming (479)
Server (33)
Unreal (4)
Gamebryo (56)
Tip & Tech (185)
협업 (61)
3DS Max (3)
Game (12)
Utility (68)
Etc (98)
Link (32)
Portfolio (19)
Subject (90)
iOS,OSX (55)
Android (14)
Linux (5)
잉여 프로젝트 (2)
게임이야기 (3)
Memories (20)
Interest (38)
Thinking (38)
한글 (30)
PaperCraft (5)
Animation (408)
Wallpaper (2)
재테크 (18)
Exercise (3)
나만의 맛집 (3)
냥이 (10)
육아 (16)
Total
Today
Yesterday

정반사는 입사벡터와 반사벡터의 크기가 같고, 입사각과 반사각의 크기가 같은것을 말한다.

Fig.1 을 보면 입사벡터 P 와 법선벡터 n 이 주어졌을때,
반사벡터 R 은 벡터 P 와 크기가 같고, 입사각과 반사각이
같음을 확인할 수 있다.
여기서는 P  n 만으로 반사벡터 을 구하는 방법을 알아보자.



 

 
우선, 입사 벡터 P 의 역벡터 -P  n 의 연장선상에 투영시켜
투영벡터 n(-P·n) 를 구한다.





입사 벡터 P 의 시작 위치를 원점에 위치시키고, 여기에 n(-P·n) 를 더하면, 입사면에 투영된 벡터의 위치를 구할수 있다.

Fig. 3 을 보면, 입사벡터 P  n(-P·n) 를 1번 더하면, 입사면에 투영된
위치를 구할 수 있고, 2번 더하면  반사벡터 R 을 구할 수 있음을
알수 있다.

결국, 반사벡터 R 
R = P  2n(-P·n)

반응형
Posted by blueasa
, |